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1.​ Introduction 

1.1 Context 

Semantic segmentation of brain tumors in Magnetic Resonance Imaging (MRI) is crucial 
for medical diagnosis and treatment planning. In recent years, U-shaped neural architectures 
have become the standard in this field. 

The first generation of these models, represented by traditional U-Net [13], relies on 
convolutional layers but has limitations in modeling long-range dependencies. The second 
generation introduced Transformer-based models, such as ViT [2] and SwinUNETR [14], which 
enhanced global context modeling through self-attention mechanisms. However, these models 
faced challenges due to their quadratic computational complexity and high data requirements, 
which limited their scalability, particularly for 3D medical images. 

Recently, a third generation of models based on State Space Models (SSMs) has emerged. 
Among these, Mamba [3] presents a new approach to modeling long-range dependencies with 
quasi-linear complexity, effectively combining memory efficiency with strong performance. 
These qualities make Mamba architectures particularly promising for 3D medical image 
segmentation. 

1.2 Project Objectives 
This project aims to evaluate and compare Mamba-based neural network architectures for 

brain tumor segmentation in multiparametric MRI using the BraTS2021 dataset [(9), (10)]. We 
benchmark three models — SegMamba [(4)], U-Mamba [(5)], and VM-UNet [(7)] — against 
established baselines, including a CNN-based model (MedNeXt) and a Transformer-based model 
(SwinUNETR). All implementations are integrated into the nnUNet framework [12] to ensure 
consistency in preprocessing, training, inference, and evaluation. 

1.3 Contributions 

This project makes several contributions to the field of medical image segmentation. 
Firstly, tumor regions were carefully classified using 3D Slicer, in which we completed a 
Google Sheets to ensure that all data’s analysis is easily found, and also thoroughly identified 
critical anatomical structures. The original training scripts were replaced with a unified 
nnUNetTrainer framework from nnU-Net, which facilitates the training process for enhanced 
efficiency. 

Additionally, customized trainers for the SegMamba, U-Mamba, and VM-Unet 3D 
models were developed, applying uniform training parameters across all models to facilitate 
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direct comparisons. To improve training stability, deep supervision was integrated into the 
models. 

It was also necessary to launch a thorough re-evaluation of previously omitted 
components from the original repositories, ensuring the inclusion of all relevant elements. 
Furthermore, a novel 3D architecture inspired by VM-Unet specifically for MRI segmentation 
was designed, contributing a new perspective to existing methodologies. 

To assess the effectiveness of our models, we accomplished a comprehensive 
comparison of the Mamba architectures against CNN- and Transformer-based baselines, 
providing valuable insights into their performance. Finally, a user-friendly web-based interface 
for model deployment was developed.  

2.​ Literature Review and Theoretical Foundations 
2.1.​ Literature review 
The study began with the U-Net architecture, which became the basis for medical image 

segmentation due to their encoder-decoder structure with skip connections. To understand 
long-range dependencies, RNNs, LSTMs, and GRUs were studied, which introduced the concept 
of recurrent hidden states (which would be useful in SSMs). 

The next important mark was understanding Word Embedding methods such as 
Word2Vec to understand how discrete inputs (image patches) can be mapped to vector spaces. 
After that, Seq2Seq Encoder-Decoder models and the Attention mechanism, due to their 
introduction of dynamic context weighting to improve performance in sequence modeling. 

Then, the basis of almost all of AI’s work today, the Transformers [1], which 
revolutionized sequence modeling by replacing recurrence with self-attention, and inspired 
architectures like SwinUNETR, used as the project’s baseline. 

The last pillar was State Space Models (SSMs), used in control theory but recently 
adapted for deep learning. With a focus on Mamba, which improves SSMs with selective scan 
and hardware-aware algorithms, achieving efficient long-range modeling. 

To apply Mamba to vision, Vision Mamba (ViM) [8] and VMamba [6] were studied, 
which addresses spatial structure and context in image data through bidirectional SSMs and 
positional embeddings.The topics mentioned above will be explained in further detail in the 
following sections.  

4 



Project 77​ ​ ​ ​ ​ ​ ​          Rapport de Synthèse Cassiopée  
 

2.2.​ Traditional CNN-based Models 

Convolutional Neural Networks (CNNs) have been the foundation of medical image 
segmentation due to their efficiency and ability to capture local spatial patterns. U-Net 
architectures introduced a U-shaped design, which combines convolution and pooling in the 
encoder with upsampling in the decoder, along with skip-connections to improve the capacity of 
capturing these local spatial patterns. However, CNNs have naturally limited receptive fields, 
which restricts their ability to capture long-range dependencies, which is a crucial aspect of 3D 
medical segmentation tasks. Although extensions such as UX-Net and MedNeXt aim to expand 
the receptive field by incorporating larger kernels or modern architectural blocks, they still 
struggle to effectively model global context. 

2.3.​ Transformer-based Models 

Transformers revolutionized the field of artificial intelligence due to the self-attention 
mechanism, which captures long-range dependencies, addressing one of the key challenges in 
CNNs-based architectures. They have been effectively adapted for vision tasks through the 
introduction of the Vision Transformer (ViT), which processes images as sequences of patches.  
This approach allows for the modeling of global dependencies via self-attention mechanisms. 
Architectures such as UNETR and SwinUNETR have successfully integrated Transformer-based 
encoders into the U-Net framework, enhancing the modeling of global context and achieving 
state-of-the-art performance across various segmentation benchmarks. However, a significant 
limitation of Transformers in 3D medical imaging is their high computational and memory 
complexity, which scales quadratically with input size. This scaling makes them less suitable for 
processing high-resolution volumetric data. 

2.4.​  State Space Models (SSMs) 

State Space Models (SSMs) have their foundation in control theory and are used to 
describe and predict the behavior of dynamic systems over time. In their classical formulation, 
the system is described through a hidden state that evolves based on previous states and external 
inputs, producing observable outputs, enabling precise modeling of time-dependent processes. 
Figure 1 illustrates this classical continuous-time SSM representation. 
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Figure 1: Classic SSM 

Since its introduction,  SSMs have been reformulated to serve as powerful sequence 
models. By translating their recurrent nature into efficient parallelizable operations, modern 
neural SSMs can capture long-term dependencies while benefiting from scalable training on 
GPUs, making them ideal for volumetric medical image segmentation, where understanding 
global structure across multiple slices is essential.  

2.5.​ Mamba 

Mamba is a recent sequence modeling architecture based on State Space Models, 
designed to efficiently capture long-range dependencies with linear computational complexity. 
Unlike self-attention mechanisms, Mamba uses structured state dynamics combined with a 
selective scan operation that enables fast and parallelizable processing of very long sequences. 
This design allows it to maintain temporal memory and context over extended inputs without the 
computational burden associated with Transformers.  

Mamba proposes a selective, hardware-aware version of SSMs that further improve 
computational efficiency, as illustrated in Figure 2. 

 
Figure 2: Selective SSM 
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These models are typically implemented as blocks composed of projections, activations, and the 

selective SSM core, as illustrated in Figure 3. 

​
                                                    Figure 3: Mamba Block 

 

To extend Mamba’s applicability to vision tasks, researchers have adapted its internal 
operations to handle spatially structured data such as 2D images and 3D volumetric scans. These 
adaptations involve reinterpreting sequence dimensions as spatial axes and redesigning Mamba 
blocks to operate over feature maps, preserving spatial hierarchies important for segmentation 
tasks. This gave rise to architectures like Vision Mamba and VMamba, which apply Mamba 
blocks as visual encoders while benefiting from the model’s efficient long-range modeling. 

2.6.​ Mamba-Based Models for Medical Image Segmentation 

The integration of Mamba into medical image segmentation led to the development of 
several architectures adapted to 2D and 3D volumetric data. One of the first efforts in this 
direction was U-Mamba, which replaces the encoder of a U-Net with Mamba blocks while 
retaining the decoder structure from nnUNet. This hybrid design leverages the efficient 
long-range modeling of Mamba in the encoding stage while preserving the strong localization 
abilities of CNN-based decoders, showing its potential as a lightweight and effective alternative 
to both CNNs and Transformers. 

VM-UNet model proposes a fully Mamba-based U-Net architecture that integrates 
VMamba blocks in both encoder and decoder. Although limited to 2D slices, VM-UNet 
demonstrates that Mamba-based blocks can effectively replace convolutional layers across an 
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entire segmentation. In parallel, SegMamba introduced a more advanced 3D feature, which 
introduced a Tri-orientated Spatial Mamba (TS-Mamba) block, that models spatial dependencies 
along three anatomical planes. In addition, it incorporates modules such as Gated Spatial 
Convolution (GSC) and Feature-level Uncertainty Estimation (FUE) to improve spatial precision 
and robustness in volumetric segmentation.  

3. Dataset and Preprocessing  

3.1 The BraTS 2021 Dataset 

The BraTS 2021 [9] dataset is a benchmark for brain tumor segmentation in 
multiparametric magnetic resonance imaging (mpMRI). The dataset includes 1,265 cases, each 
consisting of four aligned MRI modalities: T1-weighted (T1), T1-weighted post-contrast 
(T1-CE), T2-weighted (T2), and Fluid-Attenuated Inversion Recovery (FLAIR). All scans are 
co-registered to the same anatomical template, resampled to an isotropic resolution of 1mm³, and 
skull-stripped [10]. The accompanying ground truth segmentations were manually annotated by 
expert neuroradiologists and include voxel-level labels identifying tumor subregions. 

It is particularly suitable for evaluating 3D segmentation models, as it offers diverse 
tumor shapes, sizes, and locations across multiple imaging modalities. It also provides a 
consistent preprocessing pipeline, making it compatible with automated frameworks such as 
nnUNet. Each case includes a segmentation mask delineating key tumor regions, enabling a 
detailed analysis of model performance on specific substructures. 

3.2 Modalities and Ground Truth Labels 

Each of the four MRI modalities in BraTS 2021 serves a distinct diagnostic purpose and 
provides information for tumor segmentation. T1-weighted images offer high-resolution 
anatomical detail and are used to delineate brain structures. T1-CE (T1 with contrast 
enhancement) highlights regions of active tumor where the blood-brain barrier is disrupted, 
which is crucial for identifying enhancing tumor tissue. T2-weighted images are sensitive to fluid 
accumulation, making them suitable for visualizing edema and broader lesion boundaries. 
FLAIR suppresses cerebrospinal fluid (CSF) signals and is particularly effective in detecting 
infiltrative tumor regions and peritumoral edema. 

The segmentation ground truth is encoded using four label classes. Label 0 corresponds 
to background (non-tumorous tissue). Label 1 represents the Tumor Core (TC), including the 
necrotic core, non-enhancing tumor, and enhancing regions. Label 2 designates the Whole Tumor 
(WT), encompassing all tumor-related abnormalities, including edema. Finally, label 3 denotes 
the Enhancing Tumor (ET), which typically corresponds to high-grade tumor regions with active 
contrast uptake.  
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3.3 Preprocessing Pipeline 

The preprocessing pipeline was developed using the nnU-Net framework, which 
automates key steps such as data normalization, resampling, cropping irrelevant regions, and 
converting images into manageable patches. Each nnU-Net task - identified by a unique Task ID 
like Task100_BrainTumor - organizes all components required for segmentation, including raw 
and preprocessed data, trained models, and evaluation results, following a strict directory 
structure (Fig 4) that ensures standardization, automation, and reproducibility. The raw data is 
stored in nnUNet_raw/, and preprocessing - triggered by nnUNet_plan_and_preprocess - 
handles modality-specific normalization (z-score for MRI), resampling to a consistent voxel 
spacing, and background removal. The outputs are saved under nnUNet_preprocessed/. 

 
 
 
 
 
 
 
 

Figure 4:  Directory structure in nnUnet_V1 
 
For model training, nnUNet_train allows configurations such as 2D, 3D full resolution, 

and low resolution. Inference is performed using nnUNet_predict, and evaluation is done with 
nnUNet_evaluate_folder, providing metrics like Dice Score and Hausdorff Distance.  In our 
case, SegMamba was integrated into nnU-Net v1.  

 
 
 

 
 
 
 
 
 
 
 

Figure 5: nnUnet Pipeline 
 

In contrast, U-Mamba and VM-UNet used nnU-Net v2, an improved and simplified 
version of the framework that makes customization and integration of new architectures much 
easier. 
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4. Methodology 

4.1 Baseline Architectures 

4.1.1 MedNeXt 

The primary baseline is MedNext, which utilizes a U-shaped architecture composed of 
convolutional blocks with progressive downsampling and upsampling. This design is efficient 
and scalable for 3D medical image segmentation. 

4.1.2 SwinUNETR 

SwinUNETR serves as our Transformer-based baseline and follows a U-shaped 
architecture. It utilizes the Swin Transformer in the encoder and incorporates skip connections 
with a CNN decoder. This design offers strong performance in volumetric segmentation and acts 
as a benchmark for attention-based architectures. 

4.2 Mamba-based Architectures 

4.2.1 SegMamba 

​ SegMamba is 3D architecture that combines convolutional and Mamba-based modules. It 
uses the Tri-orientated Spatial Mamba (TS-Mamba) block in the encoder. As in the Figure 6, 
Gated Spatial Convolution (GSC) and Feature-level Uncertainty Estimation (FUE) modules are 
integrated to improve spatial precision and robustness in scales.  

To improve gradient flow and enhance training stability, deep supervision was integrated. 
This technique allows intermediate outputs from multiple decoder stages to contribute to the 
final loss, thereby providing more direct gradient flow to earlier layers in the network. 

Additionally, a custom trainer named nnUNetTrainer_SegMamba was implemented. This 
trainer inherits from the base nnUNetTrainer class and has been tailored specifically to handle 
the architectural and training nuances of SegMamba. It ensures that the deep supervision 
mechanism is properly applied during training and integrates seamlessly with the nnU-Net 
framework. 
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Figure 6: Segmamba architecture 

4.2.2 U-Mamba 

​ U-Mamba integrates Mamba blocks into the encoder of a U-Net architecture while 
preserving a CNN decoder. Two training configurations were explored: one features a single 
Mamba block at the bottleneck, and the other employs Mamba blocks throughout the entire 
encoder, as shown in Figure 7. This hybrid design leverages the long-range modeling capabilities 
of Mamba while retaining the spatial resolution benefits provided by convolutional decoding. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: U-Mamba architecture 

4.2.3 VM-UNet 

​ VM-UNet is a fully SSM-based architecture that uses VMamba blocks. It replaces both 
encoder and decoder paths with SSM modules. The architecture uses VSS blocks, which 
incorporate the Selective SSM operator (SS2D) along with normalization and convolution layers. 
As shown in Figure 8, VM-UNet uses patch embedding, merging, and expanding operations to 
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perform all processing with Mamba-based components. To extend its applicability to MRI image 
segmentation, we developed a 3D-adapted version of VM-UNet. 
​  

 
Figure 8: VM-UNet architecture 

4.3 Integration with nnUNet Framework 

All Mamba-based models were integrated into the nnUNet framework to leverage its 
standardized pipeline for preprocessing, training, and evaluation. A custom network class was 
created to support Mamba blocks and properly manage deep supervision during both training and 
inference. 

Each model received a dedicated trainer to initialize architectural parameters such as 
depth and feature sizes, override pooling configurations, and manage training with the AdamW 
optimizer using a custom eps value to address gradient stability. This integration ensured full 
compatibility with nnUNet’s automated setup and allowed consistent comparison across models. 

4.4 Training Strategy and Challenges 

Training of SegMamba began with Tasks 600–610, initially disabling both deep 
supervision and mixed precision (fp16). Under these conditions, the model exhibited gradient 
instability and failed to converge. Reintroducing deep supervision significantly improved 
gradient flow and enabled successful training, indicating a gradient vanishing issue when 
supervision is absent. To further stabilize training, mixed precision was re-enabled and the eps 
parameter of the AdamW optimizer was adjusted. This change resolved gradient-related issues, 
enabling convergence even without deep supervision. 
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For U-Mamba, the architecture was already compatible with the nnUNet v2 framework, 
benefiting from its modular configuration, improved logging, and simplified experimentation. 
During training, several hyperparameters were adjusted: the initial learning rate was set to 
1×10−31, and the epsilon parameter of the AdamW optimizer to 1×10−4. These modifications 
were implemented within the custom trainer to better suit the model's convergence behavior. No 
significant training issues were observed. 

VM-Mamba integration is currently under development. The basic idea of the project was 
to turn the blocks already existing (such as SS2D), into 3D versions of themselves. For that there 
were two main architectures used as the basis for these new 3D blocks: MedSegMamba [Cao et 
al., 2024] and Mamba Morph [Guo et al., 2024]. The challenges consisted on adapting each 
block with the already existing 2D version of VM-UNet, whilst attempting to be the most faithful 
possible to the original version.  

All models were trained using the Dice loss function and optimized with AdamW. 
Experiments were conducted with training durations of 400 and 800 epochs, depending on the 
specific task. 

5. Experiments and Results 

5.1 Evaluation Metrics 

​ The performance of segmentation was assessed using the Dice Similarity Coefficient 
(DICE), which is a standard metric for evaluating medical image segmentation. The Dice 
coefficient measures the overlap between the predicted segmentation and the ground truth, with a 
range from 0 (indicating no overlap) to 1 (indicating perfect overlap). Higher Dice scores reflect 
better accuracy in the segmentation of tumor subregions. 

5.2 Quantitative Comparison 

​ Table I presents the Dice scores for the Mamba-based architectures across three tumor 
subregions: Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET). The 
performance metrics are reported for both training and testing phases, along with training loss 
and epoch duration. 

SegMamba (IDs 610–611) achieved the highest Dice score in the ET region, reaching 
0.848, and demonstrated consistently strong performance in WT segmentation. In contrast, 
U-MambaEnc (ID 653) outperformed all other models in the TC region with a score of 0.757, 
which is recognized as the most challenging subregion across all architectures. Notably, the 
U-MambaBot variant (ID 652) produced competitive results while requiring significantly less 
training time, indicating a beneficial trade-off between efficiency and performance. 
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All models exhibited high consistency in WT segmentation, with Dice scores ranging 
from approximately 0.83 to 0.84, although overall performance in TC was slightly lower. The 
segmentation for ET was generally the most stable across the different architectures. 

It is important to mention that the evaluation of the VM-UNet trainer was not completed 
in time, resulting in the exclusion of its metrics from this comparison. 

Task 
ID Architecture Number 

of Epochs 

Epoch duration Final 
Loss 

TRAINING  |  raw (1) TESTING (2) 

DICE 
(postprocessing/raw) DICE 

min max (train 
loss) WT TC ET WT TC ET 

610 SegMamba 400 188.99 200.48 0.8603 0.925 0.864 0.924 0.839 0.749 0.848 

611 SegMamba 800 188.99 200.48 0.8777 0.933 0.881 0.934 0.839 0.746 0.846 

650 UMambaBot 400 180.46 192.31 0.877 0.934 0.878 0.932 0.839 0.747 0.848 

651 UMambaEnc 400 177.8 183.98 0.8612 0.916 0.844 0.914 0.831 0.746 0.841 

652 UMambaBot 800 95.38 102.34 0.8685 0.934 0.877 0.93 0.836 0.754 0.848 

653 UMambaEnc 800 177.78 184.49 0.8787 0.927 0.864 0.926 0.836 0.757 0.843 

Table I: Qualitative Results 

5.3 Qualitative Analysis and Visual Results 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Results of the Segmentation (SegMamba)                    Figure 10: The ground Truth data  
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6. Conclusion 

The purpose of this work was to assess Mamba-based models for semantic segmentation 
of brain tumors in 3D MRI scans from the BraTS 2021 dataset. These models were compared 
with conventional convolutional approaches such as MedNeXt and Transformer-based models 
like SwinUNETR. The results indicate that Mamba architectures offer an extremely efficient 
alternative for volumetric segmentation tasks by combining long-range modeling with linear 
computational complexity, although their precision needs refining in order to surpass the 
standard models in the market. 

A key contribution of this work is the standardized integration of the SegMamba, 
U-Mamba, and VM-UNet models into the nnUNet framework. By developing custom trainers 
and implementing deep supervision to stabilize the training process, issues like vanishing 
gradients were targeted and enabled direct comparisons between architectures. SegMamba 
achieved the best results in the Enhancing Tumor (ET) region with a Dice score of 0.848, while 
U-MambaEnc reached the highest accuracy in the Tumor Core (TC) region with a Dice score of 
0.757, a particularly challenging area. All models demonstrated consistent performance in Whole 
Tumor segmentation (WT), with Dice scores ranging from 0.83 to 0.84. The U-MambaBot 
variant resulted in a balanced option, providing a mix of accuracy and computational efficiency. 

Despite these advancements, significant limitations were identified. The 3D version of 
VM-UNet, proposed as an innovative adaptation for volumetric data, could not be fully 
evaluated due to the difficulties of converting 2D blocks to 3D. Additionally, it is notable that 
hyperparameter tuning, such as adjusting the epsilon parameter of the AdamW optimizer and 
using mixed precision, is very important for ensuring training stability. 

For future work, next steps involve: (1) finalizing the 3D implementation of VM-UNet; 
(2) optimizing training strategies to reduce instabilities; and (3) validating the models in 
heterogeneous clinical settings. In conclusion, Mamba-based models represent a promising 
advancement in 3D medical segmentation, offering computational efficiency without sacrificing 
much accuracy, which is especially relevant for real-time applications and resource-constrained 
environments. 
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