Project 77 Rapport de Synthése Cassiopée

Institut Polytechnique de Paris

Telecom SudParis

SudParis
—ht i |

R

casslopee

Projet Cassiopée n°77

Semantic segmentation of brain tumors via Mamba

Encadrant: Nicolas Rougon

Students:
Ayman Orkhis
Gustavo Melo Scheidt Paulino
Mariana Simoes Penello Meirelles

06/2025



Project 77 Rapport de Synthese Cassiopée

Contents
Contents 2
1. Introduction 3
L1 COMEEXL . c.ttieuiieeiie ettt et e ettt e et e et e e et e e esbeeeteeestaeestaeessaeessseessaessseesssaesssaeassaeasseeassaeansseansseesssaensseenssennes 3
1.2 PrOJECT OBJECTIVES. . .eeuuieiiiiietietieette ettt e st e st et e et e e bt e bt e bt et e et e enteenteenteeabeeaseemteeaeeentesnseenseaneas 3
1.3 CONIIIDULIONS. ... .ottt eiteeiie sttt et et et e bt e bt e be e teesseenseenseenseenseensesnsesnsesnsesnsesssesnsesnsesssessnesseens 3
2. Literature Review and Theoretical Foundations 4
2.1, LILETATUIE TEVIEW .. uvieuveeeriiereeireeiteeteetesesesstesstesssesssesssesssesssesssasssesssesssesssesssesssesssesssessssssessseesssssssnssens 4
2.2. Traditional CNN-based MOAEIS.........c..cccuiiiriiiiiiieiie ettt ettt et e e e e aeeeseaeesaeenens 5
2.3. Transformer-based MOEIS..........cccuiiiiiiiiiieeiie ettt e e s e e ve e s e e e reeeveeeaaeenes 5
2.4, State SPAce MOAELS (SSMS)....ceiiieiiiiiiieiie et stert et et et e bt et e e bt et e esbeessesaseensesnsesssesasesnsesnsesnns 5
2.5, IMLAIMDA. .....eiceiieicciecicete ettt ettt st s e s tee s tt et e e et e b e e st et e e R e et e e st e st et e erteenseenseenseenseenreans 6
2.6. Mamba-Based Models for Medical Image Segmentation...............ccccveviereeneeneeneeseeneeseeesieeneenns 7
3. Dataset and Preprocessing 8
3.1 The BraTS 2021 Dataset.......c.ccccuiiiiiiiiiieeiiieeiieeiieeiteeiteeetteesveeetveeseaeeseseessseeesseeesseaessesensseessseessseenes 8
3.2 Modalities and Ground Truth Labels..........cccecueeiierieiiiniinienieeeeeee e 8
3.3 Preprocessing PIPELINE. ........cucvieiierieriesiesierie ettt ereete e b e e e sssessaesssesssesssesssesssesssesssesseenses 9
4. Methodology 10
4.1 BaSEline ATCRItECIUIES. ....cuuieviieiieeiieeeie et et e st e et e steeete e et eeteeeteeesbeessseesaseessseessseeasseessseennses 10
1.1 MEANECKL ..ottt ettt ettt ettt et e et e et e et e etveetaeeaaeeabeetaeesseesseeteeeteeeaeeeteereeteereas 10
4.1.2 SWINUNETR ..ottt s et e e e te e s e e saeseessaeseesseenseenseensens 10
4.2 Mamba-based ATCHILECTUIES. ......ccuirierierieeriieiieieesteereesteebeeseesseebessaesssesssesssessaessaesseesssesseessesssees 10
4.2.1 SEEIMAIMDAL.......ccciiiiiieeiieetieeeeerteerteerte et eesbeesbeessseeasseeassseassseessseessseesssesssseesnseessseensseees 10
4.2.2 U=MAAIMDA......cooiiiiiiieiieeciee et etee et e tteeteeetteestaeestbeessseassseessseeesseeesseeessseensseessaessseesssesnssens 11
B.2.3 VIMUNEL. ..ottt ettt et ettt et et e e ta e e taeeaaeeabeetbeetseeteeeteeetseesseaseeteeseereeans 11
4.3 Integration with nnUNet Framework..........c.cccovoiiiiiiiiiiiiiiieee et 12
4.4 Training Strategy and Challenges...........ccveviiiriieriieiieiieieee et ere bbb e b e ssbessresssesnnes 12
5. Experiments and Results 13
5.1 EVAIUALION IMELTICS. ...uviiiiiiiiiieeiieciiecieeetee et e et e eite et e etveestbeessseessseessseessseessseessseaasseessseeessseensseanes 13
5.2 QUANtitatiVe COMMPATISOML. ...cuuieureeuieeeieeeierieeieetiesttesttesseesseesseesseenseesseenseeseeseenseenseensesnsesnsesnsesnsesnes 13
5.3 Qualitative Analysis and Visual RESUILS..........ccecieriiiriiiiiiiieiiceeeee e 14
6. Conclusion 15
7. References 15




Project 77 Rapport de Synthese Cassiopée

1. Introduction

1.1 Context

Semantic segmentation of brain tumors in Magnetic Resonance Imaging (MRI) is crucial
for medical diagnosis and treatment planning. In recent years, U-shaped neural architectures
have become the standard in this field.

The first generation of these models, represented by traditional U-Net [13], relies on
convolutional layers but has limitations in modeling long-range dependencies. The second
generation introduced Transformer-based models, such as ViT [2] and SwinUNETR [14], which
enhanced global context modeling through self-attention mechanisms. However, these models
faced challenges due to their quadratic computational complexity and high data requirements,
which limited their scalability, particularly for 3D medical images.

Recently, a third generation of models based on State Space Models (SSMs) has emerged.
Among these, Mamba [3] presents a new approach to modeling long-range dependencies with
quasi-linear complexity, effectively combining memory efficiency with strong performance.
These qualities make Mamba architectures particularly promising for 3D medical image
segmentation.

1.2 Project Objectives

This project aims to evaluate and compare Mamba-based neural network architectures for
brain tumor segmentation in multiparametric MRI using the BraTS2021 dataset [(9), (10)]. We
benchmark three models — SegMamba [(4)], U-Mamba [(5)], and VM-UNet [(7)] — against
established baselines, including a CNN-based model (MedNeXt) and a Transformer-based model
(SwinUNETR). All implementations are integrated into the nnUNet framework [12] to ensure
consistency in preprocessing, training, inference, and evaluation.

1.3 Contributions

This project makes several contributions to the field of medical image segmentation.
Firstly, tumor regions were carefully classified using 3D Slicer, in which we completed a
Google Sheets to ensure that all data’s analysis is easily found, and also thoroughly identified
critical anatomical structures. The original training scripts were replaced with a unified
nnUNetTrainer framework from nnU-Net, which facilitates the training process for enhanced
efficiency.

Additionally, customized trainers for the SegMamba, U-Mamba, and VM-Unet 3D
models were developed, applying uniform training parameters across all models to facilitate
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direct comparisons. To improve training stability, deep supervision was integrated into the
models.

It was also necessary to launch a thorough re-evaluation of previously omitted
components from the original repositories, ensuring the inclusion of all relevant elements.
Furthermore, a novel 3D architecture inspired by VM-Unet specifically for MRI segmentation
was designed, contributing a new perspective to existing methodologies.

To assess the effectiveness of our models, we accomplished a comprehensive
comparison of the Mamba architectures against CNN- and Transformer-based baselines,
providing valuable insights into their performance. Finally, a user-friendly web-based interface
for model deployment was developed.

2. Literature Review and Theoretical Foundations
2.1. Literature review

The study began with the U-Net architecture, which became the basis for medical image
segmentation due to their encoder-decoder structure with skip connections. To understand
long-range dependencies, RNNs, LSTMs, and GRUs were studied, which introduced the concept
of recurrent hidden states (which would be useful in SSMs).

The next important mark was understanding Word Embedding methods such as
Word2Vec to understand how discrete inputs (image patches) can be mapped to vector spaces.
After that, Seq2Seq Encoder-Decoder models and the Attention mechanism, due to their
introduction of dynamic context weighting to improve performance in sequence modeling.

Then, the basis of almost all of AI’s work today, the Transformers [1], which
revolutionized sequence modeling by replacing recurrence with self-attention, and inspired
architectures like SWinUNETR, used as the project’s baseline.

The last pillar was State Space Models (SSMs), used in control theory but recently
adapted for deep learning. With a focus on Mamba, which improves SSMs with selective scan
and hardware-aware algorithms, achieving efficient long-range modeling.

To apply Mamba to vision, Vision Mamba (ViM) [8] and VMamba [6] were studied,
which addresses spatial structure and context in image data through bidirectional SSMs and
positional embeddings.The topics mentioned above will be explained in further detail in the
following sections.
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2.2.  Traditional CNN-based Models

Convolutional Neural Networks (CNNs) have been the foundation of medical image
segmentation due to their efficiency and ability to capture local spatial patterns. U-Net
architectures introduced a U-shaped design, which combines convolution and pooling in the
encoder with upsampling in the decoder, along with skip-connections to improve the capacity of
capturing these local spatial patterns. However, CNNs have naturally limited receptive fields,
which restricts their ability to capture long-range dependencies, which is a crucial aspect of 3D
medical segmentation tasks. Although extensions such as UX-Net and MedNeXt aim to expand
the receptive field by incorporating larger kernels or modern architectural blocks, they still
struggle to effectively model global context.

2.3. Transformer-based Models

Transformers revolutionized the field of artificial intelligence due to the self-attention
mechanism, which captures long-range dependencies, addressing one of the key challenges in
CNNs-based architectures. They have been effectively adapted for vision tasks through the
introduction of the Vision Transformer (ViT), which processes images as sequences of patches.
This approach allows for the modeling of global dependencies via self-attention mechanisms.
Architectures such as UNETR and SwinUNETR have successfully integrated Transformer-based
encoders into the U-Net framework, enhancing the modeling of global context and achieving
state-of-the-art performance across various segmentation benchmarks. However, a significant
limitation of Transformers in 3D medical imaging is their high computational and memory
complexity, which scales quadratically with input size. This scaling makes them less suitable for
processing high-resolution volumetric data.

2.4.  State Space Models (SSMs)

State Space Models (SSMs) have their foundation in control theory and are used to
describe and predict the behavior of dynamic systems over time. In their classical formulation,
the system is described through a hidden state that evolves based on previous states and external
inputs, producing observable outputs, enabling precise modeling of time-dependent processes.
Figure 1 illustrates this classical continuous-time SSM representation.
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W (t) = Ah(t) + Bx(t); hye,(t) = [ B'(t)dt
Y(t) = Chyey(t)+Da(t)

A

source: wikipedia[6]

Figure 1: Classic SSM

Since its introduction, SSMs have been reformulated to serve as powerful sequence
models. By translating their recurrent nature into efficient parallelizable operations, modern
neural SSMs can capture long-term dependencies while benefiting from scalable training on
GPUs, making them ideal for volumetric medical image segmentation, where understanding
global structure across multiple slices is essential.

2.5. Mamba

Mamba is a recent sequence modeling architecture based on State Space Models,
designed to efficiently capture long-range dependencies with linear computational complexity.
Unlike self-attention mechanisms, Mamba uses structured state dynamics combined with a
selective scan operation that enables fast and parallelizable processing of very long sequences.
This design allows it to maintain temporal memory and context over extended inputs without the
computational burden associated with Transformers.

Mamba proposes a selective, hardware-aware version of SSMs that further improve
computational efficiency, as illustrated in Figure 2.

Selective State Space Model
with Hardware-aware State Expansion

— | 3 ) -
i SN N S Ye
N ,_______'__[%IAg

Selection Mechanism

Technical structure of Mamba

Figure 2: Selective SSM
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These models are typically implemented as blocks composed of projections, activations, and the
selective SSM core, as illustrated in Figure 3.

Input L1 AN Mamba Block

’."project/'on“x‘ /"projecrion“\

| ®
[ varva oo

Output W T

Figure 3: Mamba Block

To extend Mamba’s applicability to vision tasks, researchers have adapted its internal
operations to handle spatially structured data such as 2D images and 3D volumetric scans. These
adaptations involve reinterpreting sequence dimensions as spatial axes and redesigning Mamba
blocks to operate over feature maps, preserving spatial hierarchies important for segmentation
tasks. This gave rise to architectures like Vision Mamba and VMamba, which apply Mamba
blocks as visual encoders while benefiting from the model’s efficient long-range modeling.

2.6. Mamba-Based Models for Medical Image Segmentation

The integration of Mamba into medical image segmentation led to the development of
several architectures adapted to 2D and 3D volumetric data. One of the first efforts in this
direction was U-Mamba, which replaces the encoder of a U-Net with Mamba blocks while
retaining the decoder structure from nnUNet. This hybrid design leverages the efficient
long-range modeling of Mamba in the encoding stage while preserving the strong localization
abilities of CNN-based decoders, showing its potential as a lightweight and effective alternative
to both CNNs and Transformers.

VM-UNet model proposes a fully Mamba-based U-Net architecture that integrates
VMamba blocks in both encoder and decoder. Although limited to 2D slices, VM-UNet
demonstrates that Mamba-based blocks can effectively replace convolutional layers across an
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entire segmentation. In parallel, SegMamba introduced a more advanced 3D feature, which
introduced a Tri-orientated Spatial Mamba (TS-Mamba) block, that models spatial dependencies
along three anatomical planes. In addition, it incorporates modules such as Gated Spatial
Convolution (GSC) and Feature-level Uncertainty Estimation (FUE) to improve spatial precision
and robustness in volumetric segmentation.

3. Dataset and Preprocessing

3.1 The BraTS 2021 Dataset

The BraTS 2021 [9] dataset is a benchmark for brain tumor segmentation in
multiparametric magnetic resonance imaging (mpMRI). The dataset includes 1,265 cases, each
consisting of four aligned MRI modalities: T1-weighted (T1), T1-weighted post-contrast
(T1-CE), T2-weighted (T2), and Fluid-Attenuated Inversion Recovery (FLAIR). All scans are
co-registered to the same anatomical template, resampled to an isotropic resolution of 1mm?, and
skull-stripped [10]. The accompanying ground truth segmentations were manually annotated by
expert neuroradiologists and include voxel-level labels identifying tumor subregions.

It is particularly suitable for evaluating 3D segmentation models, as it offers diverse
tumor shapes, sizes, and locations across multiple imaging modalities. It also provides a
consistent preprocessing pipeline, making it compatible with automated frameworks such as
nnUNet. Each case includes a segmentation mask delineating key tumor regions, enabling a
detailed analysis of model performance on specific substructures.

3.2 Modalities and Ground Truth Labels

Each of the four MRI modalities in BraTS 2021 serves a distinct diagnostic purpose and
provides information for tumor segmentation. T1-weighted images offer high-resolution
anatomical detail and are used to delineate brain structures. T1-CE (T1 with contrast
enhancement) highlights regions of active tumor where the blood-brain barrier is disrupted,
which is crucial for identifying enhancing tumor tissue. T2-weighted images are sensitive to fluid
accumulation, making them suitable for visualizing edema and broader lesion boundaries.
FLAIR suppresses cerebrospinal fluid (CSF) signals and is particularly effective in detecting
infiltrative tumor regions and peritumoral edema.

The segmentation ground truth is encoded using four label classes. Label 0 corresponds
to background (non-tumorous tissue). Label 1 represents the Tumor Core (TC), including the
necrotic core, non-enhancing tumor, and enhancing regions. Label 2 designates the Whole Tumor
(WT), encompassing all tumor-related abnormalities, including edema. Finally, label 3 denotes
the Enhancing Tumor (ET), which typically corresponds to high-grade tumor regions with active
contrast uptake.
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3.3 Preprocessing Pipeline

The preprocessing pipeline was developed using the nnU-Net framework, which
automates key steps such as data normalization, resampling, cropping irrelevant regions, and
converting images into manageable patches. Each nnU-Net task - identified by a unique Task ID
like Task100_BrainTumor - organizes all components required for segmentation, including raw
and preprocessed data, trained models, and evaluation results, following a strict directory
structure (Fig 4) that ensures standardization, automation, and reproducibility. The raw data is
stored in nnUNet _raw/, and preprocessing - triggered by nnUNet plan_and_preprocess -
handles modality-specific normalization (z-score for MRI), resampling to a consistent voxel
spacing, and background removal. The outputs are saved under nnUNet_preprocessed/.

@ nnUNet_preprocessed 20/05/2025 01:54 Dossier de fichiers

BB nnUNet_raw 22/ : Dossier de fichiers

Ly nnUNet_trained_models 2210/ Dossier de fichiers

B results (02/06/2025 06:36 Daossier de fichiers

Figure 4: Directory structure in nnUnet_V1

For model training, nnUNet_train allows configurations such as 2D, 3D full resolution,
and low resolution. Inference is performed using nnUNet_predict, and evaluation is done with
nnUNet_evaluate folder, providing metrics like Dice Score and Hausdorff Distance. In our
case, SegMamba was integrated into nnU-Net v1.

Raw Data Preprocessing Training Inference
nnUNet_raw nnUNet_preprocessed nnlUNet.trained_models nnUNet_results
] Normalize, i Train
resample, crop segmentation
model :
* Images Predict on
& labels new images
»y > A

Figure 5: nnUnet Pipeline

In contrast, U-Mamba and VM-UNet used nnU-Net v2, an improved and simplified
version of the framework that makes customization and integration of new architectures much
easier.
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4. Methodology

4.1 Baseline Architectures

4.1.1 MedNeXt

The primary baseline is MedNext, which utilizes a U-shaped architecture composed of
convolutional blocks with progressive downsampling and upsampling. This design is efficient
and scalable for 3D medical image segmentation.

4.1.2 SwinUNETR

SwinUNETR serves as our Transformer-based baseline and follows a U-shaped
architecture. It utilizes the Swin Transformer in the encoder and incorporates skip connections
with a CNN decoder. This design offers strong performance in volumetric segmentation and acts
as a benchmark for attention-based architectures.

4.2 Mamba-based Architectures

4.2.1 SegMamba

SegMamba is 3D architecture that combines convolutional and Mamba-based modules. It
uses the Tri-orientated Spatial Mamba (TS-Mamba) block in the encoder. As in the Figure 6,
Gated Spatial Convolution (GSC) and Feature-level Uncertainty Estimation (FUE) modules are
integrated to improve spatial precision and robustness in scales.

To improve gradient flow and enhance training stability, deep supervision was integrated.
This technique allows intermediate outputs from multiple decoder stages to contribute to the
final loss, thereby providing more direct gradient flow to earlier layers in the network.

Additionally, a custom trainer named nnUNetTrainer SegMamba was implemented. This
trainer inherits from the base nnUNetTrainer class and has been tailored specifically to handle
the architectural and training nuances of SegMamba. It ensures that the deep supervision
mechanism is properly applied during training and integrates seamlessly with the nnU-Net
framework.

10
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Figure 6: Segmamba architecture

U-Mamba integrates Mamba blocks into the encoder of a U-Net architecture while
preserving a CNN decoder. Two training configurations were explored: one features a single
Mamba block at the bottleneck, and the other employs Mamba blocks throughout the entire
encoder, as shown in Figure 7. This hybrid design leverages the long-range modeling capabilities
of Mamba while retaining the spatial resolution benefits provided by convolutional decoding.

a b
|® c.H,W,D)
‘;’D Reshape
Linear (B.L,C)
~ r
SSM |
@SEU ®SiLU
1D Conv ‘ -~ r
Linear Linear
_ (B,L,C) I | Input
Flatten l Output
[{B.C.H.W.T)) ~ Ve
e U-Mamba Block
0 N S TR I | Residual Block
IN + Leaky ReLU ™\ Strided Convolution
Conv S r # Convolution Transposed
x2 - --- Skip Connection
(B, C, H, W, D)

Figure 7: U-Mamba architecture

4.2.3 VM-UNet

VM-UNet is a fully SSM-based architecture that uses VMamba blocks. It replaces both
encoder and decoder paths with SSM modules. The architecture uses VSS blocks, which
incorporate the Selective SSM operator (SS2D) along with normalization and convolution layers.
As shown in Figure 8, VM-UNet uses patch embedding, merging, and expanding operations to

11
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perform all processing with Mamba-based components. To extend its applicability to MRI image
segmentation, we developed a 3D-adapted version of VM-UNet.

. (a) VM-UNet D
|

(b) VSS block

1
1
1
1
\ O
1
l Patch Embedding [ Final Projection I
J L ) .
[ - @
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; - |
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9| | .
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Figure 8: VM-UNet architecture

4.3 Integration with nnUNet Framework

All Mamba-based models were integrated into the nnUNet framework to leverage its
standardized pipeline for preprocessing, training, and evaluation. A custom network class was
created to support Mamba blocks and properly manage deep supervision during both training and
inference.

Each model received a dedicated trainer to initialize architectural parameters such as
depth and feature sizes, override pooling configurations, and manage training with the AdamW
optimizer using a custom eps value to address gradient stability. This integration ensured full
compatibility with nnUNet’s automated setup and allowed consistent comparison across models.

4.4 Training Strategy and Challenges

Training of SegMamba began with Tasks 600-610, initially disabling both deep
supervision and mixed precision (fp16). Under these conditions, the model exhibited gradient
instability and failed to converge. Reintroducing deep supervision significantly improved
gradient flow and enabled successful training, indicating a gradient vanishing issue when
supervision is absent. To further stabilize training, mixed precision was re-enabled and the eps
parameter of the AdamW optimizer was adjusted. This change resolved gradient-related issues,
enabling convergence even without deep supervision.

12
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For U-Mamba, the architecture was already compatible with the nnUNet v2 framework,
benefiting from its modular configuration, improved logging, and simplified experimentation.
During training, several hyperparameters were adjusted: the initial learning rate was set to
1x1071, and the epsilon parameter of the AdamW optimizer to 1x10™*. These modifications
were implemented within the custom trainer to better suit the model's convergence behavior. No
significant training issues were observed.

VM-Mamba integration is currently under development. The basic idea of the project was
to turn the blocks already existing (such as SS2D), into 3D versions of themselves. For that there
were two main architectures used as the basis for these new 3D blocks: MedSegMamba [Cao et
al., 2024] and Mamba Morph [Guo et al., 2024]. The challenges consisted on adapting each
block with the already existing 2D version of VM-UNet, whilst attempting to be the most faithful
possible to the original version.

All models were trained using the Dice loss function and optimized with AdamW.
Experiments were conducted with training durations of 400 and 800 epochs, depending on the
specific task.

5. Experiments and Results

5.1 Evaluation Metrics

The performance of segmentation was assessed using the Dice Similarity Coefficient
(DICE), which is a standard metric for evaluating medical image segmentation. The Dice
coefficient measures the overlap between the predicted segmentation and the ground truth, with a
range from 0 (indicating no overlap) to 1 (indicating perfect overlap). Higher Dice scores reflect
better accuracy in the segmentation of tumor subregions.

5.2 Quantitative Comparison

Table I presents the Dice scores for the Mamba-based architectures across three tumor
subregions: Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET). The
performance metrics are reported for both training and testing phases, along with training loss
and epoch duration.

SegMamba (IDs 610-611) achieved the highest Dice score in the ET region, reaching
0.848, and demonstrated consistently strong performance in WT segmentation. In contrast,
U-MambaEnc (ID 653) outperformed all other models in the TC region with a score of 0.757,
which is recognized as the most challenging subregion across all architectures. Notably, the
U-MambaBot variant (ID 652) produced competitive results while requiring significantly less
training time, indicating a beneficial trade-off between efficiency and performance.

13
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All models exhibited high consistency in WT segmentation, with Dice scores ranging
from approximately 0.83 to 0.84, although overall performance in TC was slightly lower. The
segmentation for ET was generally the most stable across the different architectures.

It is important to mention that the evaluation of the VM-UNet trainer was not completed
in time, resulting in the exclusion of its metrics from this comparison.

TRAINING | raw (1) TESTING (2)
Epoch duration Final
Task . Number Loss DICE DICE
p ‘Architecture of Epochs (postprocessing/raw)
crai
min  max (l::s‘)“ WI TC ET WT TC ET

610 SegMamba 400 188.99 200.48 0.8603 0.925 0.864 0.924 0.839  0.749 0.848
611 SegMamba 800 188.99 200.48 0.8777 0.933  0.881 0.934 0.839 0.746 @ 0.846
650  UMambaBot 400 180.46 19231 0.877  0.934 0.878 0932 0.839  0.747 0.848
651 UMambaEnc 400 177.8 183.98 0.8612 0916 0.844 0914 0.831 0.746 @ 0.841
652 UMambaBot 800 95.38 10234 0.8685 0934 0877 093 | 0.836 0.754 0.848

653 UMambaEnc 800 177.78 184.49 0.8787 @ 0.927 @ 0.864 @ 0.926 @ 0.836 @ 0.757 @ 0.843
Table I: Qualitative Results

5.3 Qualitative Analysis and Visual Results

B: BraTs2021_00000

13L.0000mm

[B: BraT$2021_00000 B: BraTS2021_00000

Figure 9: Results of the Segmentation (SegMamba) Figure 10: The ground Truth data

14
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6. Conclusion

The purpose of this work was to assess Mamba-based models for semantic segmentation
of brain tumors in 3D MRI scans from the BraTS 2021 dataset. These models were compared
with conventional convolutional approaches such as MedNeXt and Transformer-based models
like SwinUNETR. The results indicate that Mamba architectures offer an extremely efficient
alternative for volumetric segmentation tasks by combining long-range modeling with linear
computational complexity, although their precision needs refining in order to surpass the
standard models in the market.

A key contribution of this work is the standardized integration of the SegMamba,
U-Mamba, and VM-UNet models into the nnUNet framework. By developing custom trainers
and implementing deep supervision to stabilize the training process, issues like vanishing
gradients were targeted and enabled direct comparisons between architectures. SegMamba
achieved the best results in the Enhancing Tumor (ET) region with a Dice score of 0.848, while
U-MambaEnc reached the highest accuracy in the Tumor Core (TC) region with a Dice score of
0.757, a particularly challenging area. All models demonstrated consistent performance in Whole
Tumor segmentation (WT), with Dice scores ranging from 0.83 to 0.84. The U-MambaBot
variant resulted in a balanced option, providing a mix of accuracy and computational efficiency.

Despite these advancements, significant limitations were identified. The 3D version of
VM-UNet, proposed as an innovative adaptation for volumetric data, could not be fully
evaluated due to the difficulties of converting 2D blocks to 3D. Additionally, it is notable that
hyperparameter tuning, such as adjusting the epsilon parameter of the AdamW optimizer and
using mixed precision, is very important for ensuring training stability.

For future work, next steps involve: (1) finalizing the 3D implementation of VM-UNet;
(2) optimizing training strategies to reduce instabilities; and (3) validating the models in
heterogeneous clinical settings. In conclusion, Mamba-based models represent a promising
advancement in 3D medical segmentation, offering computational efficiency without sacrificing
much accuracy, which is especially relevant for real-time applications and resource-constrained
environments.
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